Hauptman, H. (1977a). Acta Cryst. A 33, 553-555.
Hauptman, H. (1977b). Acta Cryst. A 33, 556-564.
Hauptman, H. \& Green, E. (1976). Acta Cryst. A 32, 45-49.

Kruger, G. J., Green, E. A., Langs, D. A. \& Weeks, C. M. (1976). Intercongress Symposium: Direct Methods in Crystallography, Buffalo, New York, August 3-6, Abstract SD 1 .

Acta Cryst. (1977). A33, 568-571

# Quintets: a Sequence of Nested Neighborhoods of the Structure Invariant $\varphi_{h}+\varphi_{k}+\varphi_{I}+\varphi_{m}+\varphi_{n}$ <br> By Herbert Hauptman <br> Medical Foundation of Buffalo, 73 High Street, Buffalo, New York 14203, USA 

(Received 23 June 1976; accepted 21 January 1977)
A sequence of nested neighborhoods of the structure invariant $\varphi=\varphi_{\mathrm{h}}+\varphi_{\mathrm{k}}+\varphi_{1}+\varphi_{\mathrm{m}}+\varphi_{\mathrm{n}}$ is derived. Each neighborhood is a subset of the succeeding ones and consists of the small number of structure factor magnitudes $|E|$ upon which, in favorable cases, the value of $\varphi$ mostly depends.

## 1. Introduction

Although the neighborhood concept was introduced only a year ago (Hauptman, 1975a, b), its important role in identifying the small set of magnitudes $|E|$ on which the value of a given structure invariant or seminvariant $\varphi$ mostly depends is now firmly established (Hauptman, 1976; Green \& Hauptman, 1976). In the present paper a sequence of nested neighborhoods of the five-phase structure invariant $\varphi=\varphi_{\mathbf{h}}+\varphi_{\mathbf{k}}$ $+\varphi_{1}+\varphi_{m}+\varphi_{\mathrm{n}}$ is obtained. In subsequent work the related probability distributions are derived, and these in turn lead to explicit estimates for $\varphi$ in terms of magnitudes $|E|$. In the accompanying papers (Fortier \& Hauptman, 1977; Hauptman \& Fortier, 1977) the conditional probability distribution of $\varphi$, given the 15 magnitudes in the second neighborhood, is derived for the space group $P 1$.

## 2. The first neighborhood

Let $\mathbf{h}, \mathbf{k}, \mathbf{l}, \mathbf{m}, \mathbf{n}$ be reciprocal vectors which satisfy

$$
\begin{equation*}
\mathbf{h}+\mathbf{k}+\mathbf{l}+\mathbf{m}+\mathbf{n}=0 \tag{2.1}
\end{equation*}
$$

Then the linear combination of phases

$$
\begin{equation*}
\varphi=\varphi_{\mathbf{h}}+\varphi_{\mathbf{k}}+\varphi_{\mathbf{l}}+\varphi_{\mathbf{m}}+\varphi_{\mathbf{n}} \tag{2.2}
\end{equation*}
$$

is a structure invariant. In analogy with earlier work (Hauptman, 1975a, b) the first neighborhood of $\varphi$ is defined to consist of the five magnitudes

$$
\begin{equation*}
\left|E_{\mathbf{h}}\right|,\left|E_{\mathbf{k}}\right|,\left|E_{\mathbf{l}}\right|,\left|E_{\mathbf{m}}\right|,\left|E_{\mathbf{n}}\right| \tag{2.3}
\end{equation*}
$$

shown schematically as the first shell in Fig. 1. [Also see Schenk (1975) for the identity of the first two neighborhoods.]

## 3. The second neighborhood

Assume that the six magnitudes

$$
\begin{equation*}
\left|E_{\mathbf{h}}\right|,\left|E_{\mathbf{k}}\right|,\left|E_{\mathbf{l}}\right|,\left|E_{\mathbf{m}}\right|,\left|E_{\mathbf{n}}\right|,\left|E_{\mathbf{h}+\mathbf{k}}\right| \tag{3.1}
\end{equation*}
$$

are all large. Then it is known that the structure invariant

$$
\begin{equation*}
\varphi_{\mathbf{h}}+\varphi_{\mathbf{k}}+\varphi_{-\mathbf{h}-\mathbf{k}} \simeq 0 \tag{3.2}
\end{equation*}
$$



Fig. 1. A sequence of nested neighborhoods for the five-phase structure invariant $\varphi=\varphi_{\mathbf{h}}+\varphi_{\mathbf{k}}+\varphi_{1}+\varphi_{m}+\varphi_{\mathbf{a}}$. The reciprocal vectors $\mathbf{h}, \mathbf{k}, \mathbf{l}, \mathbf{m}, \mathbf{n}, \mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}, \mathbf{t}, \mathbf{u}$ satisfy $\mathbf{h}+\mathbf{k}+\mathbf{l}+\mathbf{m}+\mathbf{n}=\mathbf{h}+\mathbf{k}+\mathbf{l}+\mathbf{p}+\mathbf{q}=$ $\mathbf{h}+\mathbf{k}+\mathbf{l}+\mathbf{r}+\mathbf{s}=\mathbf{h}+\mathbf{k}+\mathbf{l}+\mathbf{t}+\mathbf{u}=0$, but are otherwise arbitrary. In the applications it is best that $\left|E_{\mathbf{h}}\right|,\left|E_{\mathbf{k}}\right|,\left|E_{\mathbf{l}}\right|,\left|E_{\mathrm{m}}\right|,\left|E_{\mathrm{n}}\right|,\left|E_{\mathbf{p}}\right|$, $\left|E_{\mathbf{q}}\right|,\left|E_{\mathbf{r}}\right|,\left|E_{\mathbf{s}}\right|,\left|E_{\mathbf{t}}\right|,\left|E_{\mathbf{u}}\right|$ be large.

Also（Hauptman，1975a，b），according as the three magnitudes

$$
\begin{equation*}
\left|E_{1+\mathbf{m}}\right|,\left|E_{\mathbf{1 + n}}\right|,\left|E_{\mathbf{m}+\mathrm{n}}\right| \tag{3.3}
\end{equation*}
$$

are all large or all small，the structure invariant

$$
\begin{equation*}
\varphi_{1}+\varphi_{\mathrm{m}}+\varphi_{\mathrm{n}}+\varphi_{\mathbf{h}+\mathbf{k}} \simeq 0 \text { or } \pi, \tag{3.4}
\end{equation*}
$$

respectively．Addition of（3．2）and（3．4）then yields

$$
\begin{equation*}
\varphi_{\mathrm{h}}+\varphi_{\mathrm{k}}+\varphi_{1}+\varphi_{\mathrm{m}}+\varphi_{\mathrm{n}} \simeq 0 \text { or } \pi \tag{3.5}
\end{equation*}
$$

in the respective cases．In this way rows 1 and 11 of Table 1 are obtained．In a similar way the remaining rows of Table 1 are found．

Inspection of Table 1 shows that certain rows are mutually reinforcing．Thus rows $1-10$ of Table 1 are combined to yield the first row of Table 2．The second row of Table 2 is obtained by combining the rows 11－14 of Table 1 which are mutually reinforcing；the seventh row of Table 2 is obtained by combining rows 11， 12 and 15 of Table 1，etc．Thus the second （15－magnitude）neighborhood of $\varphi$ is obtained by adding to the five magnitudes（2．3）of the first neigh－ borhood the additional ten magnitudes

$$
\begin{align*}
&\left|E_{\mathbf{h}+\mathbf{k}}\right|,\left|E_{\mathbf{h}+\mathbf{1}}\right|,\left|E_{\mathbf{h}+\mathbf{m}}\right|,\left|E_{\mathbf{h}+\mathbf{n}}\right|,\left|E_{\mathbf{k}+\mathbf{1}}\right|, \\
&\left|E_{\mathbf{k}+\mathbf{m}}\right|,\left|E_{\mathbf{k}+\mathbf{n}}\right|,\left|E_{\mathbf{l}+\mathbf{m}}\right|,\left|E_{\mathbf{1 + n}}\right|,\left|E_{\mathbf{m}+\mathbf{n}}\right|, \tag{3.6}
\end{align*}
$$

shown schematically as the second shell of Fig． 1. Furthermore，the value of $\varphi$ is probably 0 or $\pi$ in accordance with the entries of Table 2.

## 4．The third neighborhoods of the structure invariant $\varphi=\varphi_{h}+\varphi_{k}+\varphi_{1}+\varphi_{m}+\varphi_{n}$

Let $\mathbf{p}$ and $\mathbf{q}$ be arbitrary reciprocal vectors satisfying

$$
\begin{equation*}
\mathbf{h}+\mathbf{k}+\mathbf{l}+\mathbf{p}+\mathbf{q}=0 . \tag{4.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\varphi_{p q}=\varphi_{\mathbf{h}}+\varphi_{\mathbf{k}}+\varphi_{\mathbf{1}}+\varphi_{\mathbf{p}}+\varphi_{\mathbf{q}} \tag{4.2}
\end{equation*}
$$

is a structure invariant and，in view of（2．1），

$$
\begin{equation*}
\mathbf{m}+\mathbf{n}-\mathbf{p}-\mathbf{q}=0 \tag{4.3}
\end{equation*}
$$

so that

$$
\begin{equation*}
\psi_{p q}=\varphi_{\mathbf{m}}+\varphi_{\mathbf{n}}-\varphi_{\mathbf{p}}-\varphi_{\mathbf{q}} \tag{4.4}
\end{equation*}
$$

is also a structure invariant．In view of $\S 3, \varphi$ is esti－ mated by means of the 15 magnitudes（2．3）and（3．6） in its second neighborhood，$\varphi_{p q}$ by means of the 15 magnitudes in its second neighborhood，

$$
\begin{align*}
& \left|E_{\mathbf{h}}\right|,\left|E_{\mathbf{k}}\right|,\left|E_{1}\right|,\left|E_{\mathbf{p}}\right|,\left|E_{\mathbf{q}}\right| ; \\
& \left|E_{\mathbf{h}+\mathbf{k}}\right|,\left|E_{\mathbf{h}+1}\right|,\left|E_{\mathbf{h}+\mathbf{p}}\right|,\left|E_{\mathbf{h}+\mathbf{q}}\right|,\left|E_{\mathbf{k}+\mathbf{+}}\right|, \\
& \left|E_{\mathbf{k}+\mathbf{p}}\right|,\left|E_{\mathbf{k}+\mathbf{q}}\right|,\left|E_{\mathbf{1 + \mathbf { p }}}\right|,\left|E_{\mathbf{1 + \mathbf { q }}}\right|,\left|E_{\mathbf{p}+\mathbf{q}}\right|, \tag{4.5}
\end{align*}
$$

Table 1．The probable values of the structure invariant $\varphi=\varphi_{\mathbf{h}}+\varphi_{\mathbf{k}}+\varphi_{1}+\varphi_{\mathrm{m}}+\varphi_{\mathbf{n}} ; L$ means large， $S$ means small


Table 2．The probable values of the structure invariant $\varphi=\varphi_{\mathbf{h}}+\varphi_{\mathbf{k}}+\varphi_{\mathbf{1}}+\varphi_{\mathbf{m}}+\varphi_{\mathbf{n}}$ ，given the 15 magnitudes in its second neighborhood；$L$ means large，$S$ means small；obtained by combining reinforcing rows in Table 1

| Derived from Rows of Table 1 | ¢ | h | k | $\underline{\ell}$ | m | n | 关 | $\underset{ \pm}{21}$ | $\underset{ \pm}{\text { 星 }}$ | $\underset{ \pm 1}{f}$ | $\underset{\sim}{\alpha}$ | $\frac{!}{4}$ | $\underset{\underset{\sim}{f}}{\underset{1}{f}}$ | $\begin{aligned} & \text { 星 } \\ & \vdots \end{aligned}$ | ${ }_{\sim}^{\square}$ | 古 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1－10 | 0 | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L |
| 11，12，13， 14 | $\pi$ | L | L | L | L | L | L | L | L | L | S | S | S | S | S | S |
| 11，15，16， 17 | $\pi$ | L | L | L | L | L | L | S | S | S | L | L | L | S | S | S |
| 12，15，18， 19 | $\pi$ | L | L | L | L | L | S | L | S | S | L | S | S | L | L | S |
| 13，16，18， 20 | $\pi$ | L | L | L | L | L | S | S | L | S | S | L | S | L | S | L |
| 14，17，19， 20 | $\pi$ | L | L | L | L | L | S | S | S | L | S | S | L | S | L | L |
| 11，12， 15 | $\pi$ | L | L | L | L | L | L | L | S | S | L | S | S | S | S | S |
| 11，13， 16 | $\pi$ | L | L | L | L | L | L | S | L | S | S | L | S | S | S | S |
| 11，14， 17 | $\pi$ | L | L | L | L | L | L | S | S | L | S | S | L | S | S | S |
| 12，13， 18 | $\pi$ | L | L | L | L | L | S | L | L | S | S | S | S | L | S | S |
| 12，14， 19 | $\pi$ | L | L | L | L | L | S | L | S | L | S | S | S | S | L | S |
| 13，14， 20 | $\pi$ | L | L | L | L | L | S | S | L | L | S | S | S | S | S | L |
| 15，16， 18 | $\pi$ | L | L | L | L | L | S | S | S | S | L | L | S | L | S | S |
| 15，17， 19 | $\pi$ | L | L | L | L | L | S | S | S | S | L | S | L | S | L | S |
| 16，17， 20 | $\pi$ | 1 | L | L | L | L | S | S | S | S | S | L | L | S | S | L |
| 18，19， 20 | $\pi$ | L | L | L | L | L | S | S | S | S | S | S | S | L | L | L |

and，from earlier work（Hauptman，1975b），$\psi_{p q}$ is estimated in terms of the seven magnitudes in its second neighborhood，

$$
\begin{equation*}
\left|E_{\mathbf{m}}\right|,\left|E_{\mathbf{n}}\right|,\left|E_{\mathbf{p}}\right|,\left|E_{\mathbf{q}}\right| ;\left|E_{\mathbf{m}+\mathbf{n}}\right|,\left|E_{\mathbf{m}-\mathbf{p}}\right|,\left|E_{\mathbf{m}-\mathbf{q}}\right| . \tag{4.6}
\end{equation*}
$$

However，from（2．2），（4．2）and（4．4）it is clear that the following identity holds：

$$
\begin{equation*}
\varphi-\varphi_{p q}-\psi_{p q} \equiv 0 . \tag{4.7}
\end{equation*}
$$

It is therefore to be expecter that in the favorable case that the 15 －magnitude estimatc，for $\varphi$ and $\varphi_{p q}$ ， and that the seven－magnitude estimate for $\psi_{p q}$ yield values for $\varphi, \varphi_{p q}$ and $\psi_{p q}$ in accord with（4．7），then $\varphi$ will be well estimated in terms of the 37 magnitudes （2．3），（3．6），（4．5）and（4．6），of which only the following 25 are distinct：

$$
\begin{align*}
& \left|E_{\mathbf{h}}\right|,\left|E_{\mathbf{k}}\right|,\left|E_{\mathbf{1}}\right|,\left|E_{\mathbf{m}}\right|,\left|E_{\mathbf{n}}\right| ; \\
& \left|E_{\mathbf{h}+\mathbf{k}}\right|,\left|E_{\mathbf{h}+1}\right|,\left|E_{\mathbf{h}+\mathbf{m}}\right|,\left|E_{\mathbf{h}+\mathbf{n}}\right|,\left|E_{\mathbf{k}+\mathbf{1}}\right|, \\
& \left|E_{\mathbf{k}+\mathbf{m}}\right|,\left|E_{\mathbf{k}+\mathbf{n}}\right|,\left|E_{\mathbf{1 + \mathbf { m }}}\right|,\left|E_{\mathbf{1}+\mathbf{n}}\right|,\left|E_{\mathbf{m}+\mathbf{n}}\right| ; \\
& \left|E_{\mathbf{p}}\right|,\left|E_{\mathbf{q}}\right|,\left|E_{\mathbf{h}+\mathbf{p}}\right|,\left|E_{\mathbf{h}+\mathbf{q}}\right|,\left|E_{\mathbf{k}+\mathbf{p}}\right|,\left|E_{\mathbf{k}+\mathbf{q}}\right|, \\
& \left|E_{\mathbf{1}+\mathbf{p}}\right|,\left|E_{\mathbf{1 + \mathbf { q }}}\right|,\left|E_{\mathbf{m}-\mathbf{p}}\right|,\left|E_{\mathbf{m}-\mathbf{q}}\right| . \tag{4.8}
\end{align*}
$$

Hence the third（25－magnitude）neighborhood of $\varphi$ is obtained by adjoining to the second（ 15 －magnitude） neighborhood（2．3）and（3．6）the additional ten magni－ tudes shown in the third shell of Fig．1，

$$
\begin{align*}
&\left|E_{\mathbf{p}}\right|,\left|E_{\mathbf{q}}\right|,\left|E_{\mathbf{h}+\mathbf{p}}\right|,\left|E_{\mathbf{h}+\mathbf{q}}\right|,\left|E_{\mathbf{k}+\mathbf{p}}\right|,\left|E_{\mathbf{k}+\mathbf{q}}\right|, \\
&\left|E_{\mathbf{1}+\mathbf{p}}\right|,\left|E_{\mathbf{1 + \mathbf { q }}}\right|,\left|E_{\mathbf{m}-\mathbf{p}}\right|,\left|E_{\mathbf{m}-\mathbf{q}}\right|, \tag{4.9}
\end{align*}
$$

where $\mathbf{p}$ and $\mathbf{q}$ are arbitrary reciprocal vectors satisfy－ ing（4．1）．Hence there are many third neighborhoods．

One naturally anticipates that the conditional vari－ ance of the structure invariant $\varphi$ ，given the 25 magni－ tudes in its third neighborhood，will be particularly small if it should happen that the two 15 －magnitude subsets and the 7 －magnitude subset of the third neighborhood which are the respective second neigh－ borhoods of the structure invariants $\varphi, \varphi_{p q}, \psi_{p q}$ yield reliable estimates for the latter in accord with the identity（4．7）．Thus，only those estimates are useful for which $\left|E_{\mathbf{p}}\right|$ and $\left|E_{\mathbf{q}}\right|$ are both large，where $\mathbf{p}$ and $\mathbf{q}$
satisfy（4．1）．Table 3 illustrates the particularly favor－ able case that（row 1）

$$
\begin{equation*}
\varphi \simeq \varphi_{p q} \simeq \psi_{p q} \simeq 0 \tag{4.10}
\end{equation*}
$$

or（rows 2－5）

$$
\begin{equation*}
\varphi \simeq \varphi_{p q} \simeq \pi, \psi_{p q} \simeq 0 \tag{4.11}
\end{equation*}
$$

［both in accord with（4．7）］when it is expected that， with high probability，$\varphi=0$ or $\pi$ in the respective cases．

## 5．The fourth neighborhoods of the structure invariant $\varphi=\varphi_{h}+\varphi_{k}+\varphi_{1}+\varphi_{m}+\varphi_{n}$

Proceed as in $\S 4$ and denote by $\mathbf{r}$ and $\mathbf{s}$ two reciprocal vectors which satisfy

$$
\begin{equation*}
\mathbf{h}+\mathbf{k}+\mathbf{l}+\mathbf{r}+\mathbf{s}=0 \tag{5.1}
\end{equation*}
$$

so that

$$
\begin{equation*}
\varphi_{r s}=\varphi_{\mathbf{h}}+\varphi_{\mathbf{k}}+\varphi_{1}+\varphi_{\mathrm{r}}+\varphi_{\mathbf{s}} \tag{5.2}
\end{equation*}
$$

is a structure invariant．Now it follows from（2．1）， （4．1）and（5．1）that

$$
\begin{equation*}
\mathbf{m}+\mathbf{n}-\mathbf{r}-\mathbf{s}=\mathbf{0} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{p}+\mathbf{q}-\mathbf{r}-\mathbf{s}=0 \tag{5.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
\psi_{r s}=\varphi_{\mathrm{m}}+\varphi_{\mathrm{n}}-\varphi_{\mathrm{r}}-\varphi_{\mathrm{s}} \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi_{r s}=\varphi_{\mathbf{p}}+\varphi_{\mathbf{q}}-\varphi_{\mathbf{r}}-\varphi_{\mathbf{s}} \tag{5.6}
\end{equation*}
$$

are also structure invariants．The invariant $\varphi_{r s}$ is ap－ proximated by means of the 15 magnitudes

$$
\begin{align*}
& \left|E_{\mathbf{h}}\right|,\left|E_{\mathbf{k}}\right|,\left|E_{\mathbf{l}}\right|,\left|E_{\mathbf{r}}\right|,\left|E_{\mathbf{s}}\right|, \\
& \left|E_{\mathbf{h}+\mathbf{k}}\right|,\left|E_{\mathbf{h}+\mathbf{1}}\right|,\left|E_{\mathbf{h}+\mathbf{r}}\right|,\left|E_{\mathbf{h}+\mathbf{s}}\right|,\left|E_{\mathbf{k}+\mathbf{+}}\right|, \\
& \left|E_{\mathbf{k}+\mathbf{r}}\right|,\left|E_{\mathbf{k}+\mathbf{s}}\right|,\left|E_{\mathbf{1 + r}}\right|,\left|E_{\mathbf{l + s}}\right|,\left|E_{\mathbf{r}+\mathbf{s}}\right|, \tag{5.7}
\end{align*}
$$

in its second neighborhood，$\psi_{r s}$ by means of the seven magnitudes

$$
\begin{equation*}
\left|E_{\mathbf{m}}\right|,\left|E_{\mathbf{n}}\right|,\left|E_{\mathbf{r}}\right|,\left|E_{\mathbf{s}}\right| ;\left|E_{\mathbf{m}+\mathbf{n}}\right|,\left|E_{\mathbf{m}-\mathrm{r}}\right|,\left|E_{\mathbf{m}-\mathbf{s}}\right| \tag{5.8}
\end{equation*}
$$

Table 3．The probable values of the structure invariant $\varphi=\varphi_{\mathrm{h}}+\varphi_{\mathbf{k}}+\varphi_{1}+\varphi_{\mathrm{m}}+\varphi_{\mathrm{n}}$ ，given the 25 magnitudes in its third neighborhood；$L$ means large；$S$ means small

| ¢ | $\underline{h}$ |  | $\underline{2}$ | m | n | P | 9 | 䓂 | $\stackrel{\alpha}{\perp}$ | $\begin{aligned} & 日_{1}^{\prime} \\ & \boldsymbol{1}_{1} \end{aligned}$ | عإ | $\stackrel{\sim}{\stackrel{\sim}{\mid}}$ | $\underset{\underset{\mid}{\mid 1}}{\substack{1 \\ \hline}}$ | $\underset{\underset{\mid}{\mid}}{\ddagger}$ | $\frac{e_{1}^{1}}{\frac{1}{2}}$ | ${\underset{\alpha}{1}}_{\alpha_{1}^{\prime}}^{1}$ | $\begin{aligned} & \text { ㄷ } \\ & \text { أ } \end{aligned}$ | $\stackrel{1}{\wedge_{1}}$ | $\begin{aligned} & \text { F } \\ & \text { + } \end{aligned}$ | $\stackrel{\sim}{ \pm}$ | $\underset{ \pm}{\underset{\sim}{\mid}}$ | $\frac{1}{2}$ | $\stackrel{+}{+1}$ | $\begin{aligned} & \text { Od } \\ & \text { 品 } \end{aligned}$ | \％ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | L | $L$ | L | L | L | L | L | L |
| $\pi$ | L | L | L | L | L | L | L | S | S | L | S | S | L | S | L | S | L | L | S | L | S | L | S | L | L |
| $\pi$ | L | L | $L$ | L | L | $L$ | $L$ | S | S | L | S | S | $L$ | S | $L$ | S | 1 | S | L | S | L | S | L | L | L |
| $\pi$ | L | L | L | 1 | L | L | L | S | S | S | L | s | S | L | S | L | L | L | S | 1 | S | L | S | L | L |
| $\pi$ | L | L | L | L | L | L | L | S | S | S | L | S | S | L | S | L | 1 | S | L | S | L | S | L | L | L |

in its second neighborhood, and $\chi_{r s}$ by the seven magnitudes

$$
\begin{equation*}
\left|E_{\mathbf{p}}\right|,\left|E_{\mathbf{q}}\right|,\left|E_{\mathbf{r}}\right|,\left|E_{\mathbf{s}}\right| ;\left|E_{\mathbf{p}+\mathbf{q}}\right|,\left|E_{\mathbf{p}-\mathbf{r}}\right|,\left|E_{\mathbf{p}-\mathbf{s}}\right| \tag{5.9}
\end{equation*}
$$

in its second neighborhood. Now, in addition to the identity (4.7) there are the two additional identities

$$
\begin{equation*}
\varphi-\varphi_{r s}-\psi_{r s} \equiv 0 \tag{5.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{p q}-\varphi_{r s}-\chi_{r s} \equiv 0 \tag{5.11}
\end{equation*}
$$

which must be satisfied. Hence, in view of (5.7)-(5.9), the fourth (37-magnitude) neighborhood of $\varphi$ is obtained from the 25 -magnitude third neighborhood (2.3), (3.6) and (4.9) by adjoining the additional twelve magnitudes shown in the fourth shell of Fig. 1,

$$
\begin{align*}
\left|E_{\mathbf{r}}\right|,\left|E_{\mathbf{s}}\right|,\left|E_{\mathbf{h}+\mathbf{r}}\right|,\left|E_{\mathbf{h}+\mathbf{s}}\right|,\left|E_{\mathbf{k}+\mathbf{r}}\right|,\left|E_{\mathbf{k}+\mathbf{s}}\right|,\left|E_{\mathbf{1 + \mathbf { r }}}\right|, \\
\left|E_{\mathbf{l}+\mathbf{s}}\right|,\left|E_{\mathbf{m}-\mathbf{r}}\right|,\left|E_{\mathbf{m}-\mathbf{s}}\right|,\left|E_{\mathbf{p}-\mathbf{r}}\right|,\left|E_{\mathbf{p}-\mathbf{s}}\right|, \tag{5.12}
\end{align*}
$$

where $\mathbf{r}$ and $\mathbf{s}$ are arbitrary reciprocal vectors satisfying (5.1). Hence there are many fourth neighborhoods, but only those are useful for which $\left|E_{r}\right|$ and $\left|E_{\mathbf{s}}\right|$ are large.

## 6. The remaining neighborhoods

One continues as in $\S \S 4$ and 5 to derive the fifth and higher neighborhoods of $\varphi$. Thus the fifth (51-magnitude) neighborhoods are obtained from a fourth (37magnitude) neighborhood by adjoining the 14 additional magnitudes

$$
\begin{align*}
& \left|E_{\mathbf{t}}\right|,\left|E_{\mathbf{u}}\right|,\left|E_{\mathbf{h}+\mathbf{t}}\right|,\left|E_{\mathbf{h}+\mathbf{u}}\right|,\left|E_{\mathbf{k}+\mathbf{t}}\right|,\left|E_{\mathbf{k}+\mathbf{u}}\right|, \\
& \left|E_{\mathbf{1 + \mathbf { t }}}\right|,\left|E_{\mathbf{l + \mathbf { u }}}\right|,\left|E_{\mathbf{m}-\mathbf{t}}\right|,\left|E_{\mathbf{m}-\mathbf{u}}\right|,\left|E_{\mathbf{p}-\mathbf{t}}\right|, \\
& \left|E_{\mathbf{p}-\mathbf{u}}\right|,\left|E_{\mathbf{r}-\mathbf{t}}\right|,\left|E_{\mathbf{r}-\mathbf{u}}\right| \tag{6.1}
\end{align*}
$$

where $\mathbf{t}$ and $\mathbf{u}$ are reciprocal vectors which satisfy

$$
\begin{equation*}
\mathbf{h}+\mathbf{k}+\mathbf{l}+\mathbf{t}+\mathbf{u}=0 \tag{6.2}
\end{equation*}
$$

but are otherwise arbitrary, so that again there are
many fifth neighborhoods; but only those are useful for which $\left|E_{\mathrm{t}}\right|$ and $\left|E_{\mathrm{u}}\right|$ are both large.

One continues in this way to obtain the sixth (67magnitude) neighborhoods, etc. The first five of this sequence of nested neighborhoods are conveniently exhibited in Fig. 1 in which the five magnitudes of the first shell define the first neighborhood, the 15 magnitudes of the first two shells the second neighborhood, etc.

## 7. Concluding remarks

A sequence of nested neighborhoods of the quintet invariant $\varphi$ has been obtained. There remains the task of deriving the associated conditional probability distributions and corresponding estimates for $\varphi$ in the expectation that as more and more magnitudes $|E|$ are used the potential for obtaining more and more reliable estimates will be increased. In the accompanying papers (Fortier \& Hauptman, 1977; Hauptman \& Fortier, 1977) this task is begun in the space group $P 1$ for the second neighborhood. It remains to derive analogous distributions in the remaining space groups and for the higher neighborhoods.

This research was supported in part by Grant No. MPS73-04992 from the National Science Foundation and DHEW Grant No. HL15378 and RR05716.

## References

Fortier. S. \& Hauptman, H. (1977). Acta Cryst. A 33, 572-575.
Green, E. \& Hauptman, H. (1976). Acta Cryst. A 32, 940-944.
Hauptman, H. (1975a). Acta Cryst. A 31, 671-679.
Hauptman, H. (1975b). Acta Cryst. A 31, 680-687.
Hauptman, H. (1976). Acta Cryst. A 32, 934-940.
Hauptman. H. \& Fortier, S. (1977). Acta Cryst. A 33, 575-580.
Schenk, H. (1975). Acta Cryst. A 31, S14.

